If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-21t-33=0
a = 4.9; b = -21; c = -33;
Δ = b2-4ac
Δ = -212-4·4.9·(-33)
Δ = 1087.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{1087.8}}{2*4.9}=\frac{21-\sqrt{1087.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{1087.8}}{2*4.9}=\frac{21+\sqrt{1087.8}}{9.8} $
| K^2-40=-3k | | 8x+5=12x+9 | | -5t-4=7 | | M^2=28+3m | | 7(2x+4)=5x+18 | | r^2+3=-4r | | 3x+8-2x+7x=12 | | 4x–(2x-1)+x=2x–(2+x)–x | | -2(6+x)=18+(-3x) | | 2x2-5x+67=0 | | -2(6+x)=18+3x | | 10^7x+3=100 | | 23x+1=22x+2 | | 10^(7x+3)=100 | | 3x+3(40-x)=120 | | x^2+24=-10 | | x/4+2=3+3 | | 9x-15=-9/7 | | 3/2=a/4/3 | | 3/2=4a/3 | | 3x-1=3x+(-1) | | 4c+7=17 | | 256=-16p | | z^2-14z+58=0 | | 36w^2=2-71w | | x+5x=3x-18 | | 4y^2-25y+15=0 | | 7(d+2)=3(2d-4) | | 5-7x+6+5x+3x-4=6+2•3 | | 2(w+5)=w+11 | | 25^-x+4=125 | | -15y+3y=-36-18y |